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Abstract. Techniques which exploit properties such as sparsity and total-variation have provided the ability to reconstruct images
which surpass the conventional limits of imaging. This leads to difficulties in assessing the result, as conventional metrics for
resolution are no longer valid. We develop a numerical approach to evaluating the second-order statistics of the estimate by relating
a confidence interval on the solution to a confidence interval on a pixel value, and from this we formulate a novel approach to
estimating the spatial resolution. With this estimate we can calculate the resolution at each point subject to chosen bounds on
the desired precision and confidence. We demonstrate the method for limited-angle tomographic reconstructions utilizing non-
negativity, sparse regularization, total-variation minimization, and their combinations. This provides a means to visualize and
understand the effect on the image inherent in these penalties and constraints. Examples are provided using simulated data for
different methods, and the results are shown to agree with resolution calculated empirically via the local edge response.
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1 Introduction

Imaging systems are most commonly (and intuitively) characterized by their resolution. Resolution broadly
denotes the smallest spatial scale for which details may be discerned in an image, and has been examined
from a variety of perspectives.1 It is most easily estimated in practice by some variant of the Rayleigh
criterion,2 or via the ground-resolved distance.3 This can be made more rigorous using formulations based
on decision theory and information theory.4 A deeper perspective is provided by signal processing theory
which relates resolution to physical properties of the imaging system such as aperture size,2 by viewing the
resolution as a spatial-frequency cutoff.

Modern reconstruction techniques, however, can often surpass such spectral limits. The key is the
use of numerical optimization algorithms which can incorporate sophisticated forms of prior knowledge.
One example is non-negative least squares (NNLS),5 imposing physical knowledge about non-negativity of
parameters like tissue density in limited-angle tomography,6 or light intensity in optical analogs.7 Another
example is LASSO,8 which imposes the presumption of sparsity of the object. These and related approaches
are widely used in Compressed Sensing.9–11 A method closely related to sparsity is Total Variation (TV)
minimization,12 which enforces sparsity of edges to model images with large roughly-constant regions. TV
minimization is particularly effective in medical imaging modalities such as MRI13 and CT14 given the small
number of tissue types in a typical image.

Due to the ability to surpass convention resolution limits, such optimization-based techniques are also
referred to as super-resolution15 (e.g., super-resolution using non-negativity,16 sparsity,17, 18 or smoothness
constraints19). Such approaches are extremely common in modern image processing techniques, yet can
be very difficult to understand and characterize, with most results stopping with the question of solution
uniqueness.20–22 In imaging terms, this implies a cutoff for sufficient data collection23 rather than a descrip-
tion of performance. In practice, algorithm performance has generally been evaluated empirically, where
the trade-off between resolution and signal-to-noise may also be incorporated,24, 25 and where improvements
can been seen.26

There are some interesting approaches which can extend the classical methods for calculating reso-
lution in different ways, and potentially be extended to address the above limitation. In the geoimaging
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field, Backus-Gilbert theory27–29 computes a metric of the most compact estimator at each point, based on
Gaussian statistics. Stark30, 31 proposed a generalization of this theory to incorporate more general prior
knowledge, though his framework still leaves open the question of how to formulate and solve the problem
for particular systems. A practical approach utilizes local linearizion32 of the optimization objective and
notably can address Poisson noise statistics, making it quite appropriate for the low signal levels in PET
systems.33, 34 However, linearization presumes smoothness of the penalty function, making it a problematic
choice for methods involving sparsity-imposing or non-negativity constraints. One may attempt to resolve
such limitations by employing techniques such as by smoothing the objective,35 or by employing finite dif-
ferences in a brute force linearizion technique32 though such ad hoc approaches need to be developed for
each application. Further, it should be noted that the result of local linearization is technically an estimate
of the width of the impulse response, not the reconstructed resolution.

In this paper we will pose resolution in terms of an optimization problem for finding the highest-
resolution pixel possible at each point. We will incorporate prior knowledge via constraints on the posterior
distribution which form confidence intervals on the image estimate. We use a novel approach based on
duality theory to find a set of conditions for bounds on these constraints, which form the feasible set of our
optimization problem. And unlike local linearization methods, we do not require uniqueness or smoothness
(or for that matter even convexity) of the optimization objective. Our approach will quantify trade-offs be-
tween resolution, confidence intervals on the solution, and precision on the pixel value. Hence our definition
of resolution will be the following:

Resolution: the spatial spread of the most compact pixel at a chosen location whose value may be estimated at a
given precision and given statistical confidence.

We will develop a framework to perform this estimate with a variety of different reconstruction techniques.

2 Methods

We focus on a discrete linear system model, defined as b = Ax+n, where A is the (known) m×n system
matrix; b is a vector containing the measured sensor data; x is a vector containing the pixels or voxels of the
reconstructed image of the object; and n is an unknown noise vector about which we only have statistical
information. For imaging examples, see the mathematical formulations in algebraic reconstruction for CT,36

and model-based reconstruction for MRI.37

The MAP estimate38 of x is the optimal solution to the following problem,

p = max
x

P (x|b) = max
x

P (b|x)P (x)
P (b)

. (1)

The solution, x(MAP ), is the most-probable solution out of (typically) infinite possible solutions and p
gives its probability. Assuming the noise vector n is zero-mean with independent variances σ22 for each
element, common choices for the prior distribution lead (via taking the log and rearranging constants) to the
techniques of Table 1.

LMS estimation (called Tikhonov regularization39) based on a Gaussian prior can be directly solved
via linear algebra techniques.40 The regularization parameter λLMS = σ22/σ

2
1 results from the statistics of

the noise and object, respectively. NNLS may be viewed as the result of a truncated Gaussian prior, which
is separated into a conventional Gaussian prior and a non-negativity constraint. The popular techniques
for imposing sparsity (which we denote with “L1R” for `1-regularized) such as LASSO can be viewed
as resulting from a multidimensional Laplace prior,41 where λL1R = 2

σ2
2
σ1

, with σ1 as the variance of the
prior. Extensions which involve non-identity covariances or transformations of x to a different basis, such
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Table 1 MAP estimates and corresponding problems for bounding the minimum value a pixel can take.
Case MAP Problem Pixel Minimum

LMS αLMS = min
x
‖Ax− b‖22 + λ‖x‖22 min

x
cTx

‖Ax− b‖22 + λ‖x‖22 ≤ αLMS + ε

NNLS
αNNLS = min

x
‖Ax− b‖22 + λLS‖x‖22

x ≥ 0.

min
x

cTx

‖Ax− b‖22 + λLS‖x‖22 ≤ αNNLS + ε
x ≥ 0

L1R αL1R = min
x
‖Ax− b‖22 + λL1R‖IcMx‖1 min

x
cTx

‖Ax− b‖22 + λL1R‖IcMx‖1 ≤ αL1R + ε

NNL1R
αNNL1R = min

x
‖Ax− b‖22 + λL1R‖IcMx‖1

x ≥ 0

min
x

cTx

‖Ax− b‖22 + λL1R‖IcMx‖1 ≤ αNNL1R + ε
x ≥ 0
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Fig 1 True Shepp-Logan43 phantom used versus reconstructions of limited-angle CT simulation with a noise level chosen to achieve

SNR=100:1. Least mean-squared (LMS, SNR=3.4:1), non-negative least-squares (NNLS, SNR=6.5:1), and Non-negative total-

variation regularized (NNTV, SNR=7.4:1) optimization. N = 100× 100, 30 equally-spaced parallel projections.

as TV minimization,12 or which involve complex x such as for MRI,13 are incorporated by including a (not-
necessarily square) matrix M in the prior. The matrix Ic allows us to address complex numbers if needed, by
choosing Ic = I, the identity matrix, for the real case, and Ic = (I, iI) for the complex case, with i =

√
−1.

In Fig. 1 we give examples of reconstruction results for a limited-view tomography42 simulation using
30 equally-spaced views. We compare the LMS estimate (SNR=3.4:1) to non-negative least-squares (NNLS,
SNR=6.5:1) and non-negative total-variation regularized (NNTV, SNR=7.4:1) estimates. The latter employs
a matrix M that computes finite differences along each dimension.

Clearly the resolution differs in some sense between techniques, and we will develop a method in this
paper for understanding this variation. Previously44 we developed conditions for the existence of bounds
on pixels and we extended this idea to conditions for uniqueness of the solution.45, 46 In this paper we
will extend such conditions to statistical descriptions for noise and prior knowledge in image reconstruc-
tion problems, where instead of unique solutions, we will seek solutions subject to statistical bounds on
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Fig 2 One-dimensional example of best-possible pixel or resolution cell ek (a vector of zeros with a one in its kth element) versus

lower resolution pixel c for k = 50 with n = 100, normalized to have peak value of 1.0 for comparison. The sample number here

gives the spatial location so we can view pixels as a distribution over position.

confidence.

The Definition of a Pixel “c”

We use a discrete formulation as done elsewhere47 where we define “high resolution” as the base sam-
ple spacing, which we choose to be a regular grid at a spacing that is as fine or finer than the highest
resolution possible (for example, the highest possible given our practical computational capabilities). A
“low-resolution” pixel, which we will describe by the vector c, is defined on the high-resolution grid with
a distribution that has some spread over multiple pixels, hence a distribution over space. Note that we are
defining a “pixel”48 as a vector of values on the high-resolution grid, not as the sample of the object itself,
which is simply a scalar estimate (Fig. 2). This follows the linear estimator in Backus-Gilbert theory, a
linear functional which calculates the parameter of interest, in our case a sample value for the image of the
object. In this paper we will seek the low-resolution pixel which describes the smallest region over which
we can calculate the average value with a predetermined degree of confidence. The pixel value itself (i.e.,
the scalar estimate mentioned earlier) is cTx.

2.1 Conditions for Precision via Duality

Now we will formulate a set of conditions to determine when we can estimate a pixel’s value to a desired
precision with a chosen degree of confidence. These will be the basis for an optimization program to estimate
resolution. To be clear, we have three distinct metrics of interest:
1. Resolution: the spatial spread of the pixel c about its kth element,
2. Precision: the spread (interval) of scalar values of cTx,
3. Confidence: the confidence interval on the statistical spread of P (x|b).
In particular we will start by asking if, for a given pixel estimator c and confidence (which we will denote
with f ), the value of cTx falls within a maximum allowable limit δ(max)k for the precision. This can be
tested with the following equation, where we independently calculate the maximum and minimum of cTx,
and take the difference,

max
x

cTx

P (x|b) ≥ fP (x(MAP )|b)
− min

x
cTx

P (x|b) ≥ fP (x(MAP )|b)
≤ δ(max)k . (2)

We imposed a chance constraint49 on the MAP solution, which sets a threshold for robustness of the estimate.
The parameter f ∈ (0, 1) is a fraction chosen to adjust the desired confidence threshold, which leads to a
relaxation of the range of cTx around the optimal. This gives a constraint on the statistical spread of the
posterior distribution, analogous to a constraint on the variance. Hence the constraint forces us to seek a
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more robust estimate at some lower resolution. As defined, f = 1 implies minimum confidence while f = 0
implies maximum confidence. For a Gaussian distribution, f = 0.6 constrains the confidence interval to be
the variance. Taking the log similar to MAP estimation, we get the optimization problems in Table 1 for the
minimums (the maximums are similar with minimization replaced by maximization). The parameter ε in
Table 1 relates to the confidence parameter f as

ε = −2σ22 log f. (3)

Each of these problems can be formulated as a second-order cone program (SOCP).50 SOCP’s are convex
and hence have an optimum that, if it exists, is guaranteed to be global. Further, SOCP’s can be solved
efficiently with a variety of free and commercial software tools.51–53

We can replace the optimization test of Eq. (2) with a direct set of conditions using duality theory.
A dual problem can be viewed as a test of the optimality conditions of a (primal) optimization problem,
giving a bound on the optimal. The duals of the minimization bound problems of Table 1, as well as of
their maximization counterparts, are given in Table 2. The dual optimization problems provide bounds on

Table 2 Dual optimization problems for bounding the values a pixel can take.
Case Dual of Minimum Dual of Maximum

LMS
max
y,z,µ

− bTy − µ
√
αLMS + ε

ATy + c+
√
λLSz = 0√

‖y‖22 + ‖z‖22 ≤ µ.

max
y,z,µ

− bTy − µ
√
αLMS + ε

ATy − c+
√
λLSz = 0√

‖y‖22 + ‖z‖22 ≤ µ.

NNLS
max
y,z,µ

− bTy − µ
√
αNNLS + ε

ATy + c+
√
λLSz ≥ 0√

‖y‖22 + ‖z‖22 ≤ µ.

max
y,z,µ

− bTy − µ
√
αNNLS + ε

ATy − c+
√
λLSz ≥ 0√

‖y‖22 + ‖z‖22 ≤ µ.

L1R

max
y,u,µ,η

− bTy − µ(αL1R + ε)− η

ATy + c+MTu = 0
‖Icu‖∞ ≤ µλL1R

‖y‖22 ≤ 4ηµ

max
y,u,µ,η

− bTy − µ(αL1R + ε)− η

ATy − c+MTu = 0
‖Icu‖∞ ≤ µλL1R

‖y‖22 ≤ 4ηµ

NNL1R

max
y,u,µ,η

− bTy − µ(αL1R + ε)− η

ATy + c+MTu ≥ 0
‖Icu‖∞ ≤ µλL1R

‖y‖22 ≤ 4ηµ

max
y,u,µ,η

− bTy − µ(αL1R + ε)− η

ATy − c+MTu ≥ 0
‖Icu‖∞ ≤ µλL1R

‖y‖22 ≤ 4ηµ

the primal problems. Hence by testing if a dual feasible point exists for the dual minimization and dual
maximization that achieves a certain objective, we can test if the respective primal problem is bounded by
this value. By simultaneously testing if a dual feasible solution exists for both the maximum and minimum
simultaneously, subject to the constraint that their optimal are bounded by our desired precision constraint,
we can prove or disprove whether the primal problems are bounded by this constraint. This gives us a set of
conditions. In Table 3, we give such conditions for each case.

2.2 Resolution Estimation Program

Our goal in this section will be to determine the most concentrated pixel c which fulfills the conditions of
Table 3, for a choice of precision and confidence. We define the metric for concentration of c as the spatial
variance, which we estimate with the following general formulation,

c∗ = arg min
c,dual vars

wT c

cTx fulfills our conditions (Table 3.)
c ≥ 0

1T c = 1.

(4)
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Table 3 Conditions for Desired Precision, confidence, and pixel.
Case Conditions Dual Variables

LMS

bTy + µ
√
αLMS + ε+ bTy′ + µ′√αLMS + ε ≤ δ(max)k

ATy − c+
√
λLSz = 0

ATy′ + c+
√
λLSz

′ = 0√
‖y‖22 + ‖z‖22 ≤ µ√
‖y′‖22 + ‖z′‖22 ≤ µ′

y, z, µ,
y′, z′, µ′

NNLS

bTy + µ
√
αNNLS + ε+ bTy′ + µ′√αNNLS + ε ≤ δ(max)k

ATy − c+
√
λLSz ≥ 0

ATy′ + c+
√
λLSz

′ ≥ 0√
‖y‖22 + ‖z‖22 ≤ µ√
‖y′‖22 + ‖z′‖22 ≤ µ′

y, z, µ,
y′, z′, µ′

L1R

bTy + µ(αL1R + ε) + η + bTy′ + µ′(αL1R + ε) + η′ ≤ δ(max)k

ATy − c+MTu = 0
ATy′ + c+MTu′ = 0
‖Icu‖∞ ≤ µλL1R

‖Icu′‖∞ ≤ µ′λL1R

‖y‖22 ≤ 4ηµ
‖y′‖22 ≤ 4η′µ′

y,u, µ, η,
y′,u′, µ′, η′

NNL1R

bTy + µ(αNNL1R + ε) + η + bTy′ + µ′(αNNL1R + ε) + η′ ≤ δ(max)k

ATy − c+MTu ≥ 0
ATy′ + c+MTu′ ≥ 0
‖Icu‖∞ ≤ µλL1R

‖Icu′‖∞ ≤ µ′λL1R

‖y‖22 ≤ 4ηµ
‖y′‖22 ≤ 4η′µ′

y,u, µ, η,
y′,u′, µ′, η′

The notation 0 and 1 denote vectors of zeros and ones respectively. The constraints c ≥ 0 and 1T c = 1
enforce the notion of the low-resolution pixel as a distribution (i.e., positivity and unit sum). The vector w
is similar to that of Backus-Gilbert theory, as a weighting which varies quadratically with distance from the
point of interest, to approximate an estimate of variance. The constraint “cTx fulfills our conditions” refers
to the appropriate conditions from Table 3 for the reconstruction technique we are using. The optimization
is performed over the dual variables in Table 3 along with c. As the conditions in Table 3 form convex
constraints (as per convex optimization theory), and the objective and additional constraints in Eq. (4) are
linear, this is always a convex optimization problem. The LMS case yields a version of the Backus-Gilbert
estimate.

For the NNLS case, for example, we get the following convex optimization problem

c∗ = arg min
c,y,z,µ,y′,z′,µ′

wT c

bTy + µ
√
αNNLS + ε+ bTy′ + µ′

√
αNNLS + ε ≤ δ(max)k

ATy − c+
√
λLSz ≥ 0

ATy′ + c+
√
λLSz

′ ≥ 0√
‖y‖22 + ‖z‖22 ≤ µ√
‖y′‖22 + ‖z′‖22 ≤ µ′

c ≥ 0
1T c = 1.

(5)

Note that this optimization problem must be solved for each point (by forming a weighting w concentrated
there) if the resolution is spatially-varying, which we expect it to be in general. This pixel-wise estimation
would also be required of the Backus-Gilbert and local linearization techniques. To find the range of pixel
values for each c∗ we can use the optimization problems of Table 1, or simply compute c∗Tx, using any
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feasible x, such as the MAP solution, to get an estimate within the set precision constraint.
The statistical parameters for the likelihood and prior (leading to a choice for the corresponding λ) may

be estimated from the system or data itself. A suggested choice for the precision δ(max)k is some small
value corresponding to the best dynamic range that can be expected; we used 0.01 for signals that range
within [0, 1] as it is comparable to the SNR of the system. And finally ε results from the noise statistic
and the choice of f , which should be set relatively high to model the posterior effectively; a value of 0.9
worked well for the cases we tested. We determined this choice by matching the Backus-Gilbert estimate to
a theoretical estimate based on considering the spectral cutoff for the system.

Examples of the c computed from each case for two different locations are provided in Fig. 3 for our
phantom simulation. The resolution of the system at this point is the spread of these distributions. We can
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Fig 3 Pixels (c) for different prior knowledge assumptions for location (row,col)=(10,40) (top row), and (row,col)=(22,40) (bottom

row), at f = 0.9 and δ(max)k = 0.1, N = 100× 100, 50 parallel projections. Peaks normalized to 1.0. Axes are provided only to

demonstrate size, not absolute locations.

see that the ranking in pixel concentration roughly matches the subjective expectation we had from Fig.
1. In Fig. 4 we give the resolution estimated at every pixel for these cases with the same confidence and
precision requirements, as the standard deviations of c about the point of interest.
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Fig 4 Resolution at each point in image measured by standard deviation (STD) in units of pixels at f = 0.9 and δ(max)k = 0.1,

N = 100, 30 parallel projections. Higher values imply worse resolution (more spread out pixel).

We see some interesting structure in the resolution estimates, both between techniques and within the
image. The LMS result was roughly constant, increasing slightly away from the center, due to the properties
of the tomographic system. The non-negativity constraint resulted in improved resolution for the NNLS
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case, especially for the regions where the phantom was zero, but degraded to nearly the LMS values in large
regions where we see the estimate of Fig. 4 also looks correspondingly poor. The NNTV result was overall
very good with a limited loss of resolution at edges.

2.3 Validation

For comparison, we generated a large number of realizations of the MAP estimates from Fig. 1 to estimate
the pixel statistics. We generated 5000 realizations of the noisy data (again with SNR 100:1) and computed
the sample variance of the reconstructed images for the three techniques. In Fig. 5 we show the standard
deviations of each pixel for the three methods. We can see qualitative agreement with our resolution esti-
mates; the LMS estimate is generally uniform, whereas the NNLS and NNTV are more variable for nonzero
and edge pixels, respectively. Pixel values have lower confidence if the variance is high, hence a reduction
in resolution at these high-variance regions is needed to maintain the confidence constraint there.
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Fig 5 Standard deviation of each pixel for MAP estimates, calculated using 5000 realizations with SNR 100:1

For an additional form of validation, we used the expected mean image (the mean pixel values over all
realizations) to calculate expected edge responses, similar to techniques that estimate the expected value of
the impulse response.32 The edge response or edge profile54 provides an intuitive approach for estimating
the resolution directly from the image, and is popular in super-resolution algorithms.55 This requires us
to carefully choose the location of edges in the image, and have reasonably well-isolated examples. We
performed the comparison using the edge responses rather than the impulse response, because the derivative
of the sample mean is still fairly noisy. So we took the integral of our low-resolution pixel estimates, making
a model of the predicted edge at various locations, to compare directly to the edges. Comparisons are given
in Fig. 6 where we overlay the edge models for three locations over the mean image estimate. We see that
the edge models fit quite well for the well-isolated edges at pixels 18 and 42. The apparent high-resolution
of the edge at pixel 68 is likely an artifact of the image structure, given that it appears higher-resolution even
for the LMS case.

3 Discussion

In this paper we developed an optimization-based method for computing a form of second order statistics of
MAP solutions, which we related to the classical idea of resolution. Convex optimization remains something
of an “art”,56 where non-obvious manipulations of the problem can often convert a very difficult numerical
optimization problem into a simple one. Hence we provided multiple general formulations to compute
resolution for a variety of important reconstruction techniques, all of which are straightforward to solve
with off the shelf second-order cone program (SOCP) solvers.

The resolution calculated by our method incorporates the trade-offs that results from incorporating prior
knowledge. The examples demonstrated agreement with the intuitive expectation that resolution should be
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Fig 6 Edge models for low-resolution pixels centered at 18, 42, and 68, versus mean estimated image for row 40 using LMS,

NNLS, and NNTV techniques, showing good agreement with the optimization-based method proposed in this paper. Edge models

are formed by integrating low-resolution pixel estimate (c from Eq. (4)) and scaling to similar height as the image.

improved by prior knowledge (as seen in the improved resolution in the other cases over the LMS estimate),
and indeed that resolution was better in regions of the images where the prior knowledge was more pertinent;
in the NNLS method, resolution was better in and near regions that were closer to zero, whereas in NNTV
resolution was also improved in regions with less edges. Our results should also be useful for determining
the best choice of prior to use. If a choice of prior results in a solution which is very sensitive to noise, our
technique will quantify this sensitivity. For example, with the NNTV method, the MAP solution in Fig. 1
has sharp edges which may be misleading; small amounts of noise result in small variations of the location
of these sharp edges (hence the high variance at the edges in Fig. 5). Our resolution estimate captures this
without the need to collect multiple realizations of the image.

In order to calculate the spatial details of the resolution, it must be calculated at a range of points across
the image. Ideally, the calculation could be done at every pixel, though this may be very challenging for
large images. It can also be calculated at a reduced or adaptive sample spacing, such as only on a line or
lower-resolution grid, or only at a region of interest such as a potential lesion. This load can also be alleviated
by parallelization since the calculation for each pixel is independent of others; the two-dimensional results
shown here calculated on a parallel computing system with 360 dedicated cores, taking a total of between
40 and 80 minutes for the methods.
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